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SOFTWARE DEVELOPMENT

Interpreting diagnostic assays by means of statistical modeling

Applying multivariate probabilistic networks to pathology data in an automated system has good predictive value.

Howard Robin, John S. Eberhardt III, Rick Gaertner, Jennifer Kam, and Mike Armstrong

The typical pathology laboratory processes vast amounts of patient data daily. New 
immunologic techniques, and advances in molecular biology and pharmacogenomics, have 
led to a proliferation of biologic markers, diagnostic assays, and novel biotherapeutics that 
has increased both the quantity and quality of laboratory information. These developments 
have made the therapeutic decision-making process more complex. 
However, applying dynamic statistical modeling to laboratory information may allow the 
physician to make more-effective use of available clinical information.1,2 This article 
assesses the use of a Bayesian modeling approach to combine known clinical and 
pathologic information in a mathematical framework in order to calculate pre- and posttest probability of chronic 
kidney disease (CKD) in the hospital emergency department. Bayesian analysis of complex data sets has 
historically been time-consuming and fraught with the potential for errors. New machine learning software can 
automate much of this process and produce a consistent result. The objective of this investigation was to evaluate 
one such software package, DecisionQ FasterAnalytics from DecisionQ Corp. (Kentfield, CA). In particular, the 
goal was to determine the quality, accuracy, and utility of the Bayesian models it produces.
The Investigation and Methods
Early stages of CKD are difficult to detect with current laboratory assays.3,4 If disease signs are detected early, 
effective treatment can halt or slow the progression toward end-stage renal disease.5 But studies have indicated that 
many patients are first diagnosed late in the course of their disease.6 While a number of studies have evaluated the 
use of new biomarkers for detection of early-stage renal disease, those tests are typically limited by analytic 
measurement, stage of disease, and the presence of other morbid conditions.7–9 

Figure 1. (click to 
enlarge) A 
probabilistic 
(Bayesian) model of 
renal function in a 
hospital emergency 
department 
population.

For the study reported here, the investigators applied a Bayesian machine learning tool to a 
data set of emergency-room patients with the goal of calculating pre- and posttest 
probability of renal insufficiency.
Data Collection. Between June 2003 and August 2004, at the Sharp Hospital emergency 
departments in San Diego, 740 consecutive patients who had a routine brain natriuretic 
peptide (BNP) level ordered by the department physician were automatically enrolled in the 
study. The study used routine clinical and laboratory data; therefore, enrollment did not 
require consent and was approved by the Sharp institutional review board committee.
An order for a BNP level triggered the analysis of N-terminal prohormone BNP (NT-
proBNP) and the data required for the calculation of the estimated glomerular filtration rate 
(eGFR) using the modification of diet in renal disease (MDRD) formula. The MDRD 
formula is based on blood urea nitrogen (BUN), serum creatinine, serum albumin, age, 
race, and sex. 

When the subjects were discharged from the hospital, whether directly from the emergency 
department or following hospitalization, the final discharge ICD-9 codes (from the International Classification of 
Diseases, 9th rev.) were obtained by the investigators from the hospital’s medical records department. The 
investigators evaluated the following disease diagnoses: congestive heart failure (CHF), renal disease, acute 
myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD), pneumonia, diabetes, and 
hypertension (HI BP). 
When data collection was complete, the investigators inspected the final data set for errors, 
discrepancies, and significant patterns of missing data and found it to be suitable for 
modeling. They classified certain variables further for binning prior to modeling; in this, 
they followed established clinical practice and the scientific literature (see Table I). 
Statistical Analysis. Data analysis involved the use of a Bayesian belief network. A 
Bayesian network encodes the joint probability distribution of all the variables in the 
domain by building a network of conditional probabilities. It uses conditional independence 
assumptions to make the representation tractable. The directed networks incorporate parent-
child relationships between nodes. In a network, a node is independent of its 
nondescendants given its parents. The Bayesian networks discussed here were constructed 
with the FasterAnalytics software.
The software-generated Bayesian networks use machine learning to calculate prior 
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Table I. (click to 
enlarge) Patient-data 

variables as classified 
by binning 

methodology for 
Bayesian analysis 

using FasterAnalytics 
software.

probabilities and the structure of the network. Prior probabilities are derived from the data 
to be modeled through calculation of a distribution of discrete states, or by using equal-area 
binning in the case of continuous variables. The software derives the network structure by 
means of a heuristic search method that generates hypothetical models with different 
conditional independence assumptions. 
The heuristic search takes advantage of two proprietary innovations. The first is a data 
caching and query system developed to allow an order of magnitude more data to be 
analyzed than previously possible. This enables users to consider more-complex problems 
in less time on inexpensive computing hardware. The second innovation uses highly 
efficient searches, adding flexibility to the heuristic search. Besides the greater speed and efficiency this feature 
brings to Bayesian modeling, the model quality score it produces is generally 1–5% better than that achieved with a 
standard heuristic algorithm.12

Table II. (click to 
enlarge) Cross-
validation data for 
MDRD eGFR for the 
five training sets in 
the study. 
All values are 
percentages.

The software promotes the network with the most likely model given the data available. 
Models are scored according to minimum description length, a system that provides a 
measure of the quality of a model. This scoring technique trades off good fit for reduced 
model complexity. Goodness of fit is the likelihood of the data given the model, while 
model complexity is the amount of information needed to store the model. Minimum 
description length scoring is asymptotically equivalent to Bayesian scoring, also known as 
the Bayesian information criterion.
The software evaluated in the study uses several algorithms for handling missing data. For 
the investigation, the chosen algorithm ignored the parts of each record that was missing 
information. To prevent overfitting of the model to the data, the researchers used two 
approaches. First was the application of a complexity penalty that required the addition of 
any new parameter to result in an equal or additional amount of predictive power. Second, a 
Dirichlet prior was used during modeling to build an expected error into the prior 

probability distribution of the data.
The network was validated by means of a train-and-test cross-validation methodology. This methodology involves 
selecting an independent test set at random and holding it apart from the rest of the data for training the model. The 
test set used represented 20% of the total data set, and the training set represented 80% of the total data set for a 
twofold cross-validation. The researchers repeated this twofold validation five times. 

Figure 2. (click to 
enlarge) Calculation 

of expected 
probabilities when 

normal renal function 
is assumed.

Once the model was constructed from the training set, the investigators input the test set 
into it, generating a case-specific prediction for each patient record for variables of interest. 
They then used the test set predictions to calculate predicted values (PVs) and receiver-
operator-characteristic (ROC) curves for each model. The ROC curve was calculated by 
comparing the PV for each variable to the known value in the test set on a case-specific 
basis. It was then used to calculate the area under the curve (AUC), a metric of overall 
model quality that indicates the degree of trade-off in the model between sensitivity and 
specificity. PVs were calculated for each outcome of a given variable. They provide the 
probability that a given outcome and given threshold are a true positive.
Results of Data Modeling
Modeling the laboratory data using the FasterAnalytics software, the investigators 
demonstrated a relationship between eGFR (using the MDRD formula) and cystatin C, creatinine, gender, diagnosis 
of CKD, diagnosis of CHF, and blood urea nitrogen BUN.13,14 

Table III. (click to 
enlarge) Predictive 
values for MDRD 
eGFR for the five 
training sets in the 
study. All numbers 
are percentages.

The agreement between cystatin C classified according to the Mayo Clinic modification 
scale and eGFR using the MDRD is evident in Figure 1.15,16 The model confirms the 
relationship between the various cystatin C classification approaches, age, and race.17 In 
addition, it demonstrates the direct relationship between the diagnosis of CKD and HI BP 
and diabetes.18 It is interesting that the ratio of NT-proBNP to BNP is conditionally related 
to increases in the blood urea nitrogen. Figure 1 illustrates the structure of the model and 
gives the reference ranges of the variables. Each modeled variable is represented as a node 
in the network. The histograms represent the probability distribution of outcome, with the 
percent probability of outcome noted in the label next to each bar.
The investigators statistically cross-validated the structure of the model using hold-out data 
from the five randomized train-and-test sets. They calculated ROC curves for the variable 
eGFR for each test set and calculated the AUC and PV for each variable state. The mean 

value of eGFR for the overall data set was 52.7 ml/min/1.73 m2 with a 95% confidence interval of 2.4 ml/min/1.73 
m2. The mean value of eGFR for training sets 1, 2, 4, and 5 ranged from 52.0 to 53.0 ml/min/1.73 m2, while set 3 
had a mean eGFR of 57.5 ml/min/1.73 m2. The 95% confidence intervals were 2.5–2.6 ml/min/1.73 m2 for training 
sets 1, 2, 4, and 5, and were 2.3 ml/min/1.73 m2 for set 3. The AUC ranged from 80.9 to 98.2% with a mean of 
91.5%, and the PV of the model ranged from 25.0 to 100.0% with a mean of 66.3% (see Table II).
The PVs in Table III were calculated by classifying each case as the most likely predicted outcome of the five 
possibilities. This results in the use of a 20% probability threshold for classification of each variable. By modifying 
the classification thresholds, mean PV of the model improved from 66.3 to 72.2%. The modification improved the 
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PVs of normal renal function, moderately decreased renal function, and severely decreased renal function, while 
the PV of renal failure declined and the PV of mildly decreased renal failure declined slightly (see Table IV).

Figure 3. (click to 
enlarge) Calculation 

of expected 
probabilities when 

renal failure is 
assumed.

In addition to illustrating relationships, the model encodes joint probabilities. From an 
assumption of normal eGFR, for example, the expected probability of CHF, creatinine, and 
cystatin can be calculated (see Figure 2). The dark-red bar in the histogram represents 
evidence that has been set, and the dark-blue bars represent the expected probability of 
outcome relative to the reference population represented by the light-blue bars. The labels 
indicate the percentage-point change in probability of expected outcome relative to the 
reference population. In a patient with normal renal function, there is an expected 20-
percentage-point decrease in the probability of a diagnosis of CHF, a 52-point increase in 
the likelihood of being in the low end of the range for creatinine, and a 32-point increase in 
the likelihood of being at the bottom of the cystatin range. 
On the other end of the spectrum, renal failure can be designated as the assumption and the 
expected probabilities calculated (see Figure 3). In a patient with renal failure, there is an expected 6-percentage-
point increase in the probability of a diagnosis of CHF, a 49-point increase in the likelihood of being at the top of 
the range for creatinine, and a 77-point increase in the likelihood of being at the top of the cystatin range.
The same models can be used to predict outcomes. For example, the investigators set evidence to assume a female 
patient with diagnoses of HI BP and CHF (see Figure 4). This patient can be seen to have a 14-percentage-point 
increase in the likelihood of moderately decreased renal function (52% versus 38% for the reference), and a 3-point 
increase in the likelihood of severely decreased renal function (15% versus 12%). This model calculates the most 
likely MDRD outcome as moderately decreased renal function, with a probability of 52%.
The information can also be displayed in an inference table that provides an expected distribution for the variable 
of interest for each combination of contributing factors, as well as an expected frequency for each case. 
Calculations of the expected distribution of eGFR given cystatin C and HI BP have been performed (see Table V).
Discussion

Table IV. (click to 
enlarge) PVs from 
Tables II and III as 
calculated using 
modified thresholds. 
All values are 
percentages.

The poor survival rate for patients with late-stage CKD, as well as the success in preventing 
the disease’s progression when detected early, makes the early diagnosis of renal disease 
important. Unfortunately, the current markers for renal disease are unreliable for 
differentiating mild and moderate cases of renal dysfunction from cases of severely 
decreased function.
Using a probabilistic (Bayesian) model, researchers can calculate, from multiple data 
elements, the probability of a patient having mild to moderate CKD. The software 
employed in this study demonstrated that laboratory measurements of cystatin C, serum 
creatinine, and blood urea nitrogen, when combined with clinical information including 
age, sex, and diagnoses of CHF or HI BP, can improve physicians’ ability to detect early 
renal disease. These laboratory and clinical attributes may then be used to calculate a 

patient-specific pretest probability of renal disease, identifying patients who require further clinical and laboratory 
evaluation.
The model is appropriately validated using ROC curves for all levels of renal function, with mean AUC running 
from 89.1% for severely decreased renal function to 95.3% for renal failure (see Table II). High AUCs (90.0%) 
have been achieved with cystatin C alone in patients with mild to moderate renal dysfunction; however, as Table II 
reveals, this is equivalent to the AUC achieved by the model (90.6–90.8%) in the same population.19 The strong 
AUCs for all levels of renal function, and the particularly strong PVs for the population with moderately decreased 
renal function, indicate that the model is potentially valuable for the detection of patients in the early stages of 
CKD, a clinical area in which evaluation tools currently available are limited.

Figure 4. (click to 
enlarge) Expected 

probabilities of renal 
dysfunction in a 

patient assumed to 
have hypertension 

and congestive heart 
failure.

The use of predictive models for research is well established. Now it is beginning to gain 
acceptance in clinical medicine. Algorithms for the early detection of CKD have been 
developed, and studies of new biomarkers for the detection of early renal disease have been 
reported.20–22 A broad framework that supports the use of multiple markers and clinical 
parameters has the potential to provide a more universal method for early detection.
The Bayesian model described here allows a specific framework to be developed for a 
given patient population, and it supports decision making based on multiple parameters and 
partial clinical information. The model can be tailored to the population of a specific 
facility, can be easily and dynamically updated, and can provide both rules of thumb and 
case-specific prediction. The output of the model is a probabilistic risk score that enables 
the clinician to assess the relative risk of early-stage CKD for a particular patient, given the 
local population. Testing and treatment resources then may be allocated optimally.
The FasterAnalytics graphical user interface allows the clinician to calculate pre- and 
posttest probability of disease and risk relative to the reference population. Construction of 
the model is operationally simple, and validation involves established statistical methods. 
Clinicians who are familiar with basic computational programs and basic statistics can 
construct and use similar models that are based on their domain of expertise.
The study discussed in this article does incorporate certain limitations into the data that were modeled, of course. 
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Table V. (click to 
enlarge) Expected 
distribution of eGFR 
given cystatin C and 
heart failure. Green = 
low-end distribution 
skew (i.e., normal 
kidney function). Red 
= high-end 
distribution skew 
(i.e., renal failure).

The use of ICD-9 codes rather than chart review could lead to diagnostic biases. The use of 
the MDRD formula rather than a quantitative marker examined in serum and urine samples 
from the patient also limits the clinical utility of this marker, as the model has been tested 
and validated using an estimate of glomerular filtration based upon creatinine. However, 
the promising results observed in model cross-validation indicate that a revised model using 
a true measure of GFR should produce a model of high clinical utility in the identification 
of patients with early CKD.
In addition to data limitations, there are certain limitations inherent in predictive, and 
specifically Bayesian, modeling. The model is constructed using a machine learning 
algorithm that develops the most likely model given the available data. This does not 
necessarily mean that the model is true or representative of the broader population. Further, 
as a probabilistic tool, the model provides an estimate of the likelihood of outcome. Cross-
validation statistics do supply an indication of the expected error of that estimate; however, 
Bayesian networks and machine learning cannot be assigned a confidence level the way a 
traditional hypothesis test can. While these models are very useful in stratifying patients by 
risk, it is important that they be used in the context of other clinical information and the 
experience and judgment of the clinician.
Conclusion
Standard laboratory data were found to be useful in successfully creating a Bayesian model 
to assist in the screening of CKD in hospital emergency department patients with signs and 

symptoms of heart failure. A group of additional renal markers were identified that can be used in a predictive 
model to quantify risk of disease in populations that have historically been difficult to diagnose. The addition of a 
predicted probability of disease to an intuitive graphical report improves the diagnostic utility of laboratory 
information for the clinician.

(R to L) Howard Robin, MD, is chairman of the department of pathology and medical director of the clinical 
laboratory at Sharp Memorial Hospital (San Diego). He is also medical director of the office of continuing 

medical education at Sharp HealthCare (San Diego). John S. Eberhardt III is a founder and executive vice 
president of DecisionQ Corp. (Kentfield, CA). Rick Gaertner is the supervisor of clinical chemistry for Sharp 

HealthCare. Jennifer Kam (not pictured) is research analyst for the Sharp Memorial Hospital clinical laboratory. 
Mike Armstrong is administrative system director of laboratory services at Sharp HealthCare. The authors can 

be reached at howard.robin@sharp.com, john.eberhardt@decisionq.com, rick.gaertner@sharp.com, 
jenny.kam@sharp.com, and mike.armstrong@sharp.com, respectively.
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